EconPapers    
Economics at your fingertips  
 

The Exponential Versus the Complex Power e z Function Revisited

Luis M. Sánchez-Ruiz (), Matilde Legua, Santiago Moll-López, José A. Moraño-Fernández and María-Dolores Roselló
Additional contact information
Luis M. Sánchez-Ruiz: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
Matilde Legua: Departmento de Matemática Aplicada, Universidad de Zaragoza, 50018 Zaragoza, Spain
Santiago Moll-López: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
José A. Moraño-Fernández: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
María-Dolores Roselló: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain

Mathematics, 2025, vol. 13, issue 8, 1-17

Abstract: The complex exponential function exp is a well-known entire function. In this paper, we recall its relation with the definition of the complex power of a complex number, which emanates that the complex power e z may coincide with it at some complex values. Still, on most occasions, the power represents a much broader spectrum of complex values. We also outsight how the software M a t h e m a t i c a may become a valuable tool for evaluating and visualizing complex power functions, in some cases by introducing some specific commands that have not been implemented in the software.

Keywords: complex variable; complex exponential; complex logarithm; complex power of a complex number (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/8/1306/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/8/1306/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:8:p:1306-:d:1636102

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-10
Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1306-:d:1636102