The Exponential Versus the Complex Power e z Function Revisited
Luis M. Sánchez-Ruiz (),
Matilde Legua,
Santiago Moll-López,
José A. Moraño-Fernández and
María-Dolores Roselló
Additional contact information
Luis M. Sánchez-Ruiz: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
Matilde Legua: Departmento de Matemática Aplicada, Universidad de Zaragoza, 50018 Zaragoza, Spain
Santiago Moll-López: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
José A. Moraño-Fernández: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
María-Dolores Roselló: Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
Mathematics, 2025, vol. 13, issue 8, 1-17
Abstract:
The complex exponential function exp is a well-known entire function. In this paper, we recall its relation with the definition of the complex power of a complex number, which emanates that the complex power e z may coincide with it at some complex values. Still, on most occasions, the power represents a much broader spectrum of complex values. We also outsight how the software M a t h e m a t i c a may become a valuable tool for evaluating and visualizing complex power functions, in some cases by introducing some specific commands that have not been implemented in the software.
Keywords: complex variable; complex exponential; complex logarithm; complex power of a complex number (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/8/1306/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/8/1306/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:8:p:1306-:d:1636102
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().