Physics-Informed Neural Networks and Fourier Methods for the Generalized Korteweg–de Vries Equation
Rubén Darío Ortiz Ortiz (),
Ana Magnolia Marín Ramírez and
Miguel Ángel Ortiz Marín
Additional contact information
Rubén Darío Ortiz Ortiz: Grupo de Investigación ONDAS, Instituto de Matemáticas Aplicadas, Departamento de Matemáticas, Universidad de Cartagena, Cartagena de Indias 130014, Colombia
Ana Magnolia Marín Ramírez: Grupo de Investigación ONDAS, Instituto de Matemáticas Aplicadas, Departamento de Matemáticas, Universidad de Cartagena, Cartagena de Indias 130014, Colombia
Miguel Ángel Ortiz Marín: Ingeniería de Sistemas y Computación, Universidad Nacional de Colombia, Bogotá 111321, Colombia
Mathematics, 2025, vol. 13, issue 9, 1-32
Abstract:
We conducted a comprehensive comparative study of numerical solvers for the generalized Korteweg–de Vries (gKdV) equation, focusing on classical Fourier-based Crank–Nicolson methods and physics-informed neural networks (PINNs). Our work benchmarks these approaches across nonlinear regimes—including the cubic case ( ν = 3 )—and diverse initial conditions such as solitons, smooth pulses, discontinuities, and noisy profiles. In addition to pure PINN and spectral models, we propose a novel hybrid PINN–spectral method incorporating a regularization term based on Fourier reference solutions, leading to improved accuracy and stability. Numerical experiments show that while spectral methods achieve superior efficiency in structured domains, PINNs provide flexible, mesh-free alternatives for data-driven and irregular setups. The hybrid model achieves lower relative L 2 error and better captures soliton interactions. Our results demonstrate the complementary strengths of spectral and machine learning methods for nonlinear dispersive PDEs.
Keywords: generalized Korteweg–de Vries; physics-informed neural networks; Fourier methods; nonlinear PDEs; numerical analysis; traveling waves (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/9/1521/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/9/1521/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:9:p:1521-:d:1649452
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().