EconPapers    
Economics at your fingertips  
 

Subordination Principle for a Class of Fractional Order Differential Equations

Emilia Bazhlekova
Additional contact information
Emilia Bazhlekova: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, Sofia 1113, Bulgaria

Mathematics, 2015, vol. 3, issue 2, 1-16

Abstract: The fractional order differential equation \(u'(t)=Au(t)+\gamma D_t^{\alpha} Au(t)+f(t), \ t>0\), \(u(0)=a\in X\) is studied, where \(A\) is an operator generating a strongly continuous one-parameter semigroup on a Banach space \(X\), \(D_t^{\alpha}\) is the Riemann–Liouville fractional derivative of order \(\alpha \in (0,1)\), \(\gamma>0\) and \(f\) is an \(X\)-valued function. Equations of this type appear in the modeling of unidirectional viscoelastic flows. Well-posedness is proven, and a subordination identity is obtained relating the solution operator of the considered problem and the \(C_{0}\)-semigroup, generated by the operator \(A\). As an example, the Rayleigh–Stokes problem for a generalized second-grade fluid is considered.

Keywords: Riemann–Liouville fractional derivative; \(C_0\)-semigroup of operators; Mittag–Leffler function; completely monotone function; Bernstein function (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/3/2/412/pdf (application/pdf)
https://www.mdpi.com/2227-7390/3/2/412/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:3:y:2015:i:2:p:412-427:d:50202

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:3:y:2015:i:2:p:412-427:d:50202