Singular Bilinear Integrals in Quantum Physics
Brian Jefferies
Additional contact information
Brian Jefferies: School of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia
Mathematics, 2015, vol. 3, issue 3, 1-41
Abstract:
Bilinear integrals of operator-valued functions with respect to spectral measures and integrals of scalar functions with respect to the product of two spectral measures arise in many problems in scattering theory and spectral analysis. Unfortunately, the theory of bilinear integration with respect to a vector measure originating from the work of Bartle cannot be applied due to the singular variational properties of spectral measures. In this work, it is shown how ``decoupled'' bilinear integration may be used to find solutions \(X\) of operator equations \(AX-XB=Y\) with respect to the spectral measure of \(A\) and to apply such representations to the spectral decomposition of block operator matrices. A new proof is given of Peller's characterisation of the space \(L^1((P\otimes Q)_{\mathcal L(\mathcal H)})\) of double operator integrable functions for spectral measures \(P\), \(Q\) acting in a Hilbert space \(\mathcal H\) and applied to the representation of the trace of \(\int_{\Lambda\times\Lambda}\varphi\,d(PTP)\) for a trace class operator \(T\). The method of double operator integrals due to Birman and Solomyak is used to obtain an elementary proof of the existence of Krein's spectral shift function.
Keywords: bilinear integration; tensor products; operator equations; double operator integrals; spectral measure (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/3/3/563/pdf (application/pdf)
https://www.mdpi.com/2227-7390/3/3/563/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:3:y:2015:i:3:p:563-603:d:51839
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().