EconPapers    
Economics at your fingertips  
 

Measurement Uncertainty for Finite Quantum Observables

René Schwonnek, David Reeb and Reinhard F. Werner
Additional contact information
René Schwonnek: Quantum Information Group, Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover, Germany
David Reeb: Quantum Information Group, Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover, Germany
Reinhard F. Werner: Quantum Information Group, Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover, Germany

Mathematics, 2016, vol. 4, issue 2, 1-21

Abstract: Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y , for any pair ( x , y ) . This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.

Keywords: uncertainty relations; error-disturbance tradeoff; semidefinite programming; optimal transport; measurement uncertainty (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/4/2/38/pdf (application/pdf)
https://www.mdpi.com/2227-7390/4/2/38/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:4:y:2016:i:2:p:38-:d:71287

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jmathe:v:4:y:2016:i:2:p:38-:d:71287