EconPapers    
Economics at your fingertips  
 

Least-Squares Solution of Linear Differential Equations

Daniele Mortari
Additional contact information
Daniele Mortari: Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA

Mathematics, 2017, vol. 5, issue 4, 1-18

Abstract: This study shows how to obtain least-squares solutions to initial value problems (IVPs), boundary value problems (BVPs), and multi-value problems (MVPs) for nonhomogeneous linear differential equations (DEs) with nonconstant coefficients of any order. However, without loss of generality, the approach has been applied to second-order DEs. The proposed method has two steps. The first step consists of writing a constrained expression , that has the DE constraints embedded. These kind of expressions are given in terms of a new unknown function, g ( t ) , and they satisfy the constraints, no matter what g ( t ) is. The second step consists of expressing g ( t ) as a linear combination of m independent known basis functions. Specifically, orthogonal polynomials are adopted for the basis functions. This choice requires rewriting the DE and the constraints in terms of a new independent variable, x ? [ ? 1 , + 1 ] . The procedure leads to a set of linear equations in terms of the unknown coefficients of the basis functions that are then computed by least-squares. Numerical examples are provided to quantify the solutions’ accuracy for IVPs, BVPs and MVPs. In all the examples provided, the least-squares solution is obtained with machine error accuracy.

Keywords: linear least-squares; interpolation; embedded linear constraints (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2227-7390/5/4/48/pdf (application/pdf)
https://www.mdpi.com/2227-7390/5/4/48/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:5:y:2017:i:4:p:48-:d:114308

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jmathe:v:5:y:2017:i:4:p:48-:d:114308