EconPapers    
Economics at your fingertips  
 

Controlling Chaos—Forced van der Pol Equation

Matthew Cooper, Peter Heidlauf and Timothy Sands
Additional contact information
Matthew Cooper: Air Force Research Laboratory, Albuquerque, NM 87117, USA
Peter Heidlauf: Air Force Research Laboratory, Dayton, OH 45433, USA
Timothy Sands: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

Mathematics, 2017, vol. 5, issue 4, 1-10

Abstract: Nonlinear systems are typically linearized to permit linear feedback control design, but, in some systems, the nonlinearities are so strong that their performance is called chaotic, and linear control designs can be rendered ineffective. One famous example is the van der Pol equation of oscillatory circuits. This study investigates the control design for the forced van der Pol equation using simulations of various control designs for iterated initial conditions. The results of the study highlight that even optimal linear, time-invariant (LTI) control is unable to control the nonlinear van der Pol equation, but idealized nonlinear feedforward control performs quite well after an initial transient effect of the initial conditions. Perhaps the greatest strength of ideal nonlinear control is shown to be the simplicity of analysis. Merely equate coefficients order-of-differentiation insures trajectory tracking in steady-state (following dissipation of transient effects of initial conditions), meanwhile the solution of the time-invariant linear-quadratic optimal control problem with infinite time horizon is needed to reveal constant control gains for a linear-quadratic regulator. Since analytical development is so easy for ideal nonlinear control, this article focuses on numerical demonstrations of trajectory tracking error.

Keywords: van der Pol; oscillator; forced; linear feedback; nonlinear feedforward (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/5/4/70/pdf (application/pdf)
https://www.mdpi.com/2227-7390/5/4/70/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:5:y:2017:i:4:p:70-:d:120329

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jmathe:v:5:y:2017:i:4:p:70-:d:120329