Mean Values of Products of L -Functions and Bernoulli Polynomials
Abdelmejid Bayad and
Daeyeoul Kim
Additional contact information
Abdelmejid Bayad: Laboratoire de Mathematiques et Modélisation d’Évry (UMR 8071), Université d’Évry Val d’Essonne, Université Paris-Saclay, I.B.G.B.I., 23 Bd. de France, 91037 Évry CEDEX, France
Daeyeoul Kim: Department of Mathematics, Institute of Pure and Applied Mathematics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
Mathematics, 2018, vol. 6, issue 12, 1-11
Abstract:
Let m 1 , ? , m r be nonnegative integers, and set: M r = m 1 + ? + m r . In this paper, first we establish an explicit linear decomposition of: ∏ i = 1 r B m i ( x ) m i ! in terms of Bernoulli polynomials B k ( x ) with 0 ≤ k ≤ M r . Second, for any integer q ≥ 2 , we study the mean values of the Dirichlet L -functions at negative integers: ∑ χ 1 , ? , χ r ( mod q ) ; χ 1 ? χ r = 1 ∏ i = 1 r L ( − m i , χ i ) where the summation is over Dirichlet characters χ i modulo q . Incidentally, a part of our work recovers Nielsen’s theorem, Nörlund’s formula, and its generalization by Hu, Kim, and Kim.
Keywords: Dirichlet character; Bernoulli polynomials; mean value of the L-function (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/6/12/337/pdf (application/pdf)
https://www.mdpi.com/2227-7390/6/12/337/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:6:y:2018:i:12:p:337-:d:191784
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().