EconPapers    
Economics at your fingertips  
 

Forecast-Triggered Model Predictive Control of Constrained Nonlinear Processes with Control Actuator Faults

Da Xue and Nael H. El-Farra
Additional contact information
Da Xue: Department of Chemical Engineering, University of California, Davis, CA 95616, USA
Nael H. El-Farra: Department of Chemical Engineering, University of California, Davis, CA 95616, USA

Mathematics, 2018, vol. 6, issue 6, 1-20

Abstract: This paper addresses the problem of fault-tolerant stabilization of nonlinear processes subject to input constraints, control actuator faults and limited sensor–controller communication. A fault-tolerant Lyapunov-based model predictive control (MPC) formulation that enforces the fault-tolerant stabilization objective with reduced sensor–controller communication needs is developed. In the proposed formulation, the control action is obtained through the online solution of a finite-horizon optimal control problem based on an uncertain model of the plant. The optimization problem is solved in a receding horizon fashion subject to appropriate Lyapunov-based stability constraints which are designed to ensure that the desired stability and performance properties of the closed-loop system are met in the presence of faults. The state-space region where fault-tolerant stabilization is guaranteed is explicitly characterized in terms of the fault magnitude, the size of the plant-model mismatch and the choice of controller design parameters. To achieve the control objective with minimal sensor–controller communication, a forecast-triggered communication strategy is developed to determine when sensor–controller communication can be suspended and when it should be restored. In this strategy, transmission of the sensor measurement at a given sampling time over the sensor–controller communication channel to update the model state in the predictive controller is triggered only when the Lyapunov function or its time-derivative are forecasted to breach certain thresholds over the next sampling interval. The communication-triggering thresholds are derived from a Lyapunov stability analysis and are explicitly parameterized in terms of the fault size and a suitable fault accommodation parameter. Based on this characterization, fault accommodation strategies that guarantee closed-loop stability while simultaneously optimizing control and communication system resources are devised. Finally, a simulation case study involving a chemical process example is presented to illustrate the implementation and evaluate the efficacy of the developed fault-tolerant MPC formulation.

Keywords: model predictive control (MPC); fault-tolerant control; networked control systems; actuator faults; chemical processes (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/6/6/104/pdf (application/pdf)
https://www.mdpi.com/2227-7390/6/6/104/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:6:y:2018:i:6:p:104-:d:153346

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:6:y:2018:i:6:p:104-:d:153346