EconPapers    
Economics at your fingertips  
 

Kinematics in the Information Age

Brendon Smeresky, Alexa Rizzo and Timothy Sands
Additional contact information
Brendon Smeresky: Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA 93943, USA
Alexa Rizzo: Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA 93943, USA
Timothy Sands: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

Mathematics, 2018, vol. 6, issue 9, 1-12

Abstract: Modern kinematics derives directly from developments in the 1700s, and in their current instantiation, have been adopted as standard realizations…or templates that seem unquestionable. For example, so-called aerospace sequences of rotations are ubiquitously accepted as the norm for aerospace applications, owing from a recent heritage in the space age of the late twentieth century. With the waning of the space-age as a driver for technology development, the information age has risen with the advent of digital computers, and this begs for re-evaluation of assumptions made in the former era. The new context of the digital computer defines the use of the term “information age” in the manuscript title and further highlights the novelty and originality of the research. The effects of selecting different Direction Cosine Matrices (DCM)-to-Euler Angle rotations on accuracy, step size, and computational time in modern digital computers will be simulated and analyzed. The experimental setup will include all twelve DCM rotations and also includes critical analysis of necessary computational step size. The results show that the rotations are classified into symmetric and non-symmetric rotations and that no one DCM rotation outperforms the others in all metrics used, yielding the potential for trade space analysis to select the best DCM for a specific instance. Novel illustrations include the fact that one of the ubiquitous sequences (the “313 sequence”) has degraded relative accuracy measured by mean and standard deviations of errors, but may be calculated faster than the other ubiquitous sequence (the “321 sequence”), while a lesser known “231 sequence” has comparable accuracy and calculation-time. Evaluation of the 231 sequence also illustrates the originality of the research. These novelties are applied to spacecraft attitude control in this manuscript, but equally apply to robotics, aircraft, and surface and subsurface vehicles.

Keywords: Phoronomics; mechanics; kinetics; kinematics; direction cosines; Euler angles; space dynamics; digital computation; control systems; control engineering (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/6/9/148/pdf (application/pdf)
https://www.mdpi.com/2227-7390/6/9/148/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:6:y:2018:i:9:p:148-:d:166005

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:6:y:2018:i:9:p:148-:d:166005