EconPapers    
Economics at your fingertips  
 

On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem

Ahmed Alsaedi, Bashir Ahmad, Madeaha Alghanmi and Sotiris K. Ntouyas
Additional contact information
Ahmed Alsaedi: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Bashir Ahmad: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Madeaha Alghanmi: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Sotiris K. Ntouyas: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Mathematics, 2019, vol. 7, issue 11, 1-13

Abstract: We establish sufficient criteria for the existence of solutions for a nonlinear generalized Langevin-type nonlocal fractional-order integral multivalued problem. The convex and non-convex cases for the multivalued map involved in the given problem are considered. Our results rely on Leray–Schauder nonlinear alternative for multivalued maps and Covitz and Nadler’s fixed point theorem. Illustrative examples for the main results are included.

Keywords: differential inclusions; Caputo-type fractional derivative; fractional integral; existence; fixed point (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/11/1015/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/11/1015/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:11:p:1015-:d:280306

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1015-:d:280306