EconPapers    
Economics at your fingertips  
 

Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates

Nodari Vakhania
Additional contact information
Nodari Vakhania: Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Morelos 62209, Mexico

Mathematics, 2019, vol. 7, issue 11, 1-42

Abstract: Scheduling jobs with release and due dates on a single machine is a classical strongly NP-hard combination optimization problem. It has not only immediate real-life applications but also it is effectively used for the solution of more complex multiprocessor and shop scheduling problems. Here, we propose a general method that can be applied to the scheduling problems with job release times and due-dates. Based on this method, we carry out a detailed study of the single-machine scheduling problem, disclosing its useful structural properties. These properties give us more insight into the complex nature of the problem and its bottleneck feature that makes it intractable. This method also helps us to expose explicit conditions when the problem can be solved in polynomial time. In particular, we establish the complexity status of the special case of the problem in which job processing times are mutually divisible by constructing a polynomial-time algorithm that solves this setting. Apparently, this setting is a maximal polynomially solvable special case of the single-machine scheduling problem with non-arbitrary job processing times.

Keywords: scheduling algorithm; release-time; due-date; divisible numbers; lateness; bin packing; time complexity (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/11/1104/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/11/1104/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:11:p:1104-:d:287022

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1104-:d:287022