Fast Computation of Integrals with Fourier-Type Oscillator Involving Stationary Point
Sakhi Zaman,
Irshad Hussain and
Dhananjay Singh
Additional contact information
Sakhi Zaman: Department of Basic Sciences, University of Engineering and Technology, Peshawar 25000, Pakistan
Irshad Hussain: Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan
Dhananjay Singh: Department of Electronics Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea
Mathematics, 2019, vol. 7, issue 12, 1-14
Abstract:
An adaptive splitting algorithm was implemented for numerical evaluation of Fourier-type highly oscillatory integrals involving stationary point. Accordingly, a modified Levin collocation method was coupled with multi-resolution quadratures in order to tackle the stationary point and irregular oscillations of the integrand caused by ω . Some test problems are included to verify the accuracy of the proposed methods.
Keywords: Chebyshev–Levin quadrature; adaptive splitting algorithm; multi-resolution quadratures; Chebyshev differentiation matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/7/12/1160/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/12/1160/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:12:p:1160-:d:293098
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().