EconPapers    
Economics at your fingertips  
 

Asymptotic Stability of Non-Autonomous Systems and a Generalization of Levinson’s Theorem

Min-Gi Lee
Additional contact information
Min-Gi Lee: Department of Mathematics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea

Mathematics, 2019, vol. 7, issue 12, 1-10

Abstract: We study the asymptotic stability of non-autonomous linear systems with time dependent coefficient matrices { A ( t ) } t ∈ R . The classical theorem of Levinson has been an indispensable tool for the study of the asymptotic stability of non-autonomous linear systems. Contrary to constant coefficient system, having all eigenvalues in the left half complex plane does not imply asymptotic stability of the zero solution. Levinson’s theorem assumes that the coefficient matrix is a suitable perturbation of the diagonal matrix. Our objective is to prove a theorem similar to Levinson’s Theorem when the family of matrices merely admits an upper triangular factorization. In fact, in the presence of defective eigenvalues, Levinson’s Theorem does not apply. In our paper, we first investigate the asymptotic behavior of upper triangular systems and use the fixed point theory to draw a few conclusions. Unless stated otherwise, we aim to understand asymptotic behavior dimension by dimension, working with upper triangular with internal blocks adds flexibility to the analysis.

Keywords: asymptotic stability; non-autonomous system; Levinson’s Theorem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/12/1213/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/12/1213/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:12:p:1213-:d:296026

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1213-:d:296026