A Characterization of Polynomial Density on Curves via Matrix Algebra
Carmen Escribano,
Raquel Gonzalo and
Emilio Torrano
Additional contact information
Carmen Escribano: Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
Raquel Gonzalo: Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
Emilio Torrano: Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
Mathematics, 2019, vol. 7, issue 12, 1-12
Abstract:
In this work, our aim is to obtain conditions to assure polynomial approximation in Hilbert spaces L 2 ( μ ) , with μ a compactly supported measure in the complex plane, in terms of properties of the associated moment matrix with the measure μ . To do it, in the more general context of Hermitian positive semidefinite matrices, we introduce two indexes, γ ( M ) and λ ( M ) , associated with different optimization problems concerning theses matrices. Our main result is a characterization of density of polynomials in the case of measures supported on Jordan curves with non-empty interior using the index γ and other specific index related to it. Moreover, we provide a new point of view of bounded point evaluations associated with a measure in terms of the index γ that will allow us to give an alternative proof of Thomson’s theorem, by using these matrix indexes. We point out that our techniques are based in matrix algebra tools in the framework of Hermitian positive definite matrices and in the computation of certain indexes related to some optimization problems for infinite matrices.
Keywords: Hermitian moment problem; orthogonal polynomials; smallest eigenvalue; measures; polynomial density (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/7/12/1231/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/12/1231/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:12:p:1231-:d:297125
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().