EconPapers    
Economics at your fingertips  
 

An Efficient Spectral Method to Solve Multi-Dimensional Linear Partial Different Equations Using Chebyshev Polynomials

Sahuck Oh
Additional contact information
Sahuck Oh: School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 10540, Korea

Mathematics, 2019, vol. 7, issue 1, 1-21

Abstract: We present a new method to efficiently solve a multi-dimensional linear Partial Differential Equation (PDE) called the quasi-inverse matrix diagonalization method. In the proposed method, the Chebyshev-Galerkin method is used to solve multi-dimensional PDEs spectrally. Efficient calculations are conducted by converting dense equations of systems sparse using the quasi-inverse technique and by separating coupled spectral modes using the matrix diagonalization method. When we applied the proposed method to 2-D and 3-D Poisson equations and coupled Helmholtz equations in 2-D and a Stokes problem in 3-D, the proposed method showed higher efficiency in all cases than other current methods such as the quasi-inverse method and the matrix diagonalization method in solving the multi-dimensional PDEs. Due to this efficiency of the proposed method, we believe it can be applied in various fields where multi-dimensional PDEs must be solved.

Keywords: Chebyshev polynomials; Galerkin basis functions; partial differential equation; quasi-inverse technique; matrix diagonalization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/1/90/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/1/90/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:1:p:90-:d:198218

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:90-:d:198218