EconPapers    
Economics at your fingertips  
 

Existence and Stability Analysis for Fractional Differential Equations with Mixed Nonlocal Conditions

Suphawat Asawasamrit, Woraphak Nithiarayaphaks, Sotiris K. Ntouyas and Jessada Tariboon
Additional contact information
Suphawat Asawasamrit: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Woraphak Nithiarayaphaks: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Sotiris K. Ntouyas: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
Jessada Tariboon: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Mathematics, 2019, vol. 7, issue 2, 1-11

Abstract: In this paper, we study the existence and uniqueness of solution for fractional differential equations with mixed fractional derivatives, integrals and multi-point conditions. After that, we also establish different kinds of Ulam stability for the problem at hand. Examples illustrating our results are also presented.

Keywords: Caputo fractional derivative; nonlocal boundary conditions; integral conditions; existence; uniqueness; Ulam–Hyers stability (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/2/117/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/2/117/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:2:p:117-:d:200163

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:117-:d:200163