EconPapers    
Economics at your fingertips  
 

Operational Methods in the Study of Sobolev-Jacobi Polynomials

Nicolas Behr, Giuseppe Dattoli, Gérard H. E. Duchamp, Silvia Licciardi and Karol A. Penson
Additional contact information
Nicolas Behr: Institut de Recherche en Informatique Fondamentale (IRIF), Université Paris-Diderot, F-75013 Paris, France
Giuseppe Dattoli: ENEA—Frascati Research Center, Via Enrico Fermi 45, 00044 Rome, Italy
Gérard H. E. Duchamp: Laboratoire d’Informatique de Paris-Nord (LIPN), CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France
Silvia Licciardi: ENEA—Frascati Research Center, Via Enrico Fermi 45, 00044 Rome, Italy
Karol A. Penson: Laboratoire de Physique Theorique de la Matière Condensée (LPTMC), CNRS UMR 7600, Sorbonne Universités, Université Pierre et Marie Curie, F-75005 Paris, France

Mathematics, 2019, vol. 7, issue 2, 1-34

Abstract: Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K -tuple L -shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly.

Keywords: Sobolev-Jacobi polynomials; umbral image techniques; generalized normal-ordering; lacunary generating functions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/2/124/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/2/124/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:2:p:124-:d:200631

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:124-:d:200631