EconPapers    
Economics at your fingertips  
 

Study of a High Order Family: Local Convergence and Dynamics

Cristina Amorós, Ioannis K. Argyros, Ruben González, Á. Alberto Magreñán, Lara Orcos and Íñigo Sarría
Additional contact information
Cristina Amorós: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
Ioannis K. Argyros: Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA
Ruben González: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
Á. Alberto Magreñán: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
Lara Orcos: Facultad de Educación, Universidad Internacional de La Rioja, 26006 Logroño, Spain
Íñigo Sarría: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain

Mathematics, 2019, vol. 7, issue 3, 1-14

Abstract: The study of the dynamics and the analysis of local convergence of an iterative method, when approximating a locally unique solution of a nonlinear equation, is presented in this article. We obtain convergence using a center-Lipschitz condition where the ball radii are greater than previous studies. We investigate the dynamics of the method. To validate the theoretical results obtained, a real-world application related to chemistry is provided.

Keywords: high order; sixteenth order convergence method; local convergence; dynamics (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/3/225/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/3/225/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:3:p:225-:d:209715

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:225-:d:209715