Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions
Bashir Ahmad,
Ymnah Alruwaily,
Ahmed Alsaedi and
Sotiris K. Ntouyas
Additional contact information
Bashir Ahmad: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Ymnah Alruwaily: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Ahmed Alsaedi: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Sotiris K. Ntouyas: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Mathematics, 2019, vol. 7, issue 3, 1-14
Abstract:
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain. Modern tools of functional analysis are applied to obtain the main results. Examples are constructed for the illustration of the derived results. We also investigate different kinds of Ulam stability, such as Ulam-Hyers stability, generalized Ulam-Hyers stability, and Ulam-Hyers-Rassias stability for the problem at hand.
Keywords: Caputo fractional derivative; nonlocal; integro-multipoint boundary conditions; existence; uniqueness; Ulam-Hyers stability (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/7/3/249/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/3/249/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:3:p:249-:d:212730
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().