EconPapers    
Economics at your fingertips  
 

Sharpe’s Ratio for Oriented Fuzzy Discount Factor

Anna Łyczkowska-Hanćkowiak
Additional contact information
Anna Łyczkowska-Hanćkowiak: Department of Finance, WSB University in Poznań, 61-895 Poznań, Poland

Mathematics, 2019, vol. 7, issue 3, 1-16

Abstract: The analysis presented in this paper regards the security of a present value given as an ordered fuzzy number. The present value was estimated in an imprecise manner and supplemented by the forecast of its coming changes. A discount factor of such security is an ordered fuzzy number of the orientation identical to the oriented present value that determines it. All classical methods of portfolio analysis are based on the definition of the return rate. In the case of securities with a fuzzy present value, a discount factor is a better tool for portfolio analysis than the return rate, which implies the chosen methods of management of securities should be revised and transformed to equivalent methods based on a discount factor. This would enable the use of those methods in the case of a financial instrument of the oriented fuzzy present value. This paper presents example results of the realization of such a postulate. The main aim of the paper is to generalize Sharpe’s ratio to a case of investment recommendations management formulated for a security characterized by an oriented discount factor. A five-degree rating scale was used. The whole deliberation is illustrated by broad numerical examples.

Keywords: Sharpe’s ratio; ordered fuzzy number; fuzzy oriented discount factor (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/3/272/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/3/272/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:3:p:272-:d:214492

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:272-:d:214492