EconPapers    
Economics at your fingertips  
 

Extended Fuzzy Metrics and Fixed Point Theorems

Valentín Gregori, Juan-José Miñana and David Miravet
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Campus de Gandia, Calle Paranimf 1, 46730 Gandia, Spain
Juan-José Miñana: Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Spain
David Miravet: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Campus de Gandia, Calle Paranimf 1, 46730 Gandia, Spain

Mathematics, 2019, vol. 7, issue 3, 1-14

Abstract: In this paper, we study those fuzzy metrics M on X , in the George and Veeramani’s sense, such that ? t > 0 M ( x , y , t ) > 0 . The continuous extension M 0 of M to X 2 × 0 , + ∞ is called extended fuzzy metric. We prove that M 0 generates a metrizable topology on X , which can be described in a similar way to a classical metric. M 0 can be used for simplifying or improving questions concerning M ; in particular, we expose the interest of this kind of fuzzy metrics to obtain generalizations of fixed point theorems given in fuzzy metric spaces.

Keywords: fuzzy metric space; fuzzy contractive mapping; fixed point (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/3/303/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/3/303/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:3:p:303-:d:216968

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:303-:d:216968