EconPapers    
Economics at your fingertips  
 

Positive Solutions for Discontinuous Systems via a Multivalued Vector Version of Krasnosel’ski?’s Fixed Point Theorem in Cones

Rodrigo López Pouso, Radu Precup and Jorge Rodríguez-López
Additional contact information
Rodrigo López Pouso: Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Vida, 15782 Santiago, Spain
Radu Precup: Department of Mathematics, Babeş-Bolyai University, 400084 Cluj, Romania
Jorge Rodríguez-López: Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Vida, 15782 Santiago, Spain

Mathematics, 2019, vol. 7, issue 5, 1-15

Abstract: We establish the existence of positive solutions for systems of second–order differential equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of Krasnosel’ski?’s fixed point theorem in cones which we apply to a regularization of the discontinuous integral operator associated to the differential system. We include several examples to illustrate our theory.

Keywords: Krasnosel’ski?’s fixed point theorem; positive solutions; discontinuous differential equations; differential system (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/5/451/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/5/451/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:5:p:451-:d:232749

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:451-:d:232749