The Regularity of Solution for Weakly Coupled System Derived by Microwave Heating Model
Yumei Liao and
Wei Wei
Additional contact information
Yumei Liao: Department of Mathematics, School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, China
Wei Wei: Department of Mathematics, School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, China
Mathematics, 2019, vol. 7, issue 6, 1-11
Abstract:
In this paper, we study the regularity of the weak solution of the coupled system derived from the microwave heating model with frequency variable. We first show that the weak solution E of the system is Hölder continuous near the boundary of S = ∂ Ω . The main idea of the proof is based on the estimation of linear degenerate system in Campanato space. Then we show that the solution u of the heat conduction equation is Hölder continuous with exponent α 2 . Finally, under the appropriate conditions we show that the coupled system with microwave heating has a weak solution. Moreover the regularity of the weak solution is studied.
Keywords: time-harmonic Maxwell’s equations; microwave heating model; regularity of weak solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/7/6/501/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/6/501/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:6:p:501-:d:236556
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().