EconPapers    
Economics at your fingertips  
 

Non-Stationary Fractal Interpolation

Peter Massopust
Additional contact information
Peter Massopust: Center of Mathematics, Technical University of Munich, 85748 Garching, Germany

Mathematics, 2019, vol. 7, issue 8, 1-14

Abstract: We introduce the novel concept of a non-stationary iterated function system by considering a countable sequence of distinct set-valued maps { F k } k ∈ N where each F k maps H ( X ) → H ( X ) and arises from an iterated function system. Employing the recently-developed theory of non-stationary versions of fixed points and the concept of forward and backward trajectories, we present new classes of fractal functions exhibiting different local and global behavior and extend fractal interpolation to this new, more flexible setting.

Keywords: iterated function system (IFS); attractor; fractal interpolation; non-stationary IFS; non-stationary fractal interpolation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/7/8/666/pdf (application/pdf)
https://www.mdpi.com/2227-7390/7/8/666/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:7:y:2019:i:8:p:666-:d:251669

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:666-:d:251669