EconPapers    
Economics at your fingertips  
 

Projection Decoding of Some Binary Optimal Linear Codes of Lengths 36 and 40

Lucky Galvez and Jon-Lark Kim
Additional contact information
Lucky Galvez: Department of Mathematics, Sogang University, Seoul 04107, Korea
Jon-Lark Kim: Department of Mathematics, Sogang University, Seoul 04107, Korea

Mathematics, 2019, vol. 8, issue 1, 1-13

Abstract: Practically good error-correcting codes should have good parameters and efficient decoding algorithms. Some algebraically defined good codes, such as cyclic codes, Reed–Solomon codes, and Reed–Muller codes, have nice decoding algorithms. However, many optimal linear codes do not have an efficient decoding algorithm except for the general syndrome decoding which requires a lot of memory. Therefore, a natural question to ask is which optimal linear codes have an efficient decoding. We show that two binary optimal [ 36 , 19 , 8 ] linear codes and two binary optimal [ 40 , 22 , 8 ] codes have an efficient decoding algorithm. There was no known efficient decoding algorithm for the binary optimal [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes. We project them onto the much shorter length linear [ 9 , 5 , 4 ] and [ 10 , 6 , 4 ] codes over G F ( 4 ) , respectively. This decoding algorithm, called projection decoding , can correct errors of weight up to 3. These [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes respectively have more codewords than any optimal self-dual [ 36 , 18 , 8 ] and [ 40 , 20 , 8 ] codes for given length and minimum weight, implying that these codes are more practical.

Keywords: codes; optimal codes; self-dual codes; projection decoding (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/1/15/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/1/15/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2019:i:1:p:15-:d:299920

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2019:i:1:p:15-:d:299920