EconPapers    
Economics at your fingertips  
 

Extending the Applicability of Stirling’s Method

Cristina Amorós, Ioannis K. Argyros, Á. Alberto Magreñán, Samundra Regmi, Rubén González and Juan Antonio Sicilia
Additional contact information
Cristina Amorós: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
Ioannis K. Argyros: Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA
Á. Alberto Magreñán: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
Samundra Regmi: Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA
Rubén González: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
Juan Antonio Sicilia: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain

Mathematics, 2019, vol. 8, issue 1, 1-10

Abstract: Stirling’s method is considered as an alternative to Newton’s method when the latter fails to converge to a solution of a nonlinear equation. Both methods converge quadratically under similar convergence criteria and require the same computational effort. However, Stirling’s method has shortcomings too. In particular, contractive conditions are assumed to show convergence. However, these conditions limit its applicability. The novelty of our paper lies in the fact that our convergence criteria do not require contractive conditions. Hence, we extend its applicability of Stirling’s method. Numerical examples illustrate our new findings.

Keywords: Stirling’s method; Newton’s method; convergence; Fréchet derivative; banach space (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/1/35/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/1/35/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2019:i:1:p:35-:d:303851

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2019:i:1:p:35-:d:303851