EconPapers    
Economics at your fingertips  
 

New Bounds for the ? -Indices of Graphs

Eber Lenes, Exequiel Mallea-Zepeda and Jonnathan Rodríguez
Additional contact information
Eber Lenes: Área de Ciencias Básicas Exactas, Grupo de Investigación Deartica, Universidad del Sinú, Cartagena 130001, Colombia
Exequiel Mallea-Zepeda: Departamento de Matemática, Universidad de Tarapacá, 1000000 Arica, Chile
Jonnathan Rodríguez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile

Mathematics, 2020, vol. 8, issue 10, 1-12

Abstract: Let G be a graph, for any real 0 ≤ α ≤ 1 , Nikiforov defines the matrix A α ( G ) as A α ( G ) = α D ( G ) + ( 1 − α ) A ( G ) , where A ( G ) and D ( G ) are the adjacency matrix and diagonal matrix of degrees of the vertices of G . This paper presents some extremal results about the spectral radius ρ α ( G ) of the matrix A α ( G ) . In particular, we give a lower bound on the spectral radius ρ α ( G ) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρ α ( G ) in terms of order and minimal degree. Furthermore, for n > l > 0 and 1 ≤ p ≤ ⌊ n − l 2 ⌋ , let G p ≅ K l ∨ ( K p ∪ K n − p − l ) be the graph obtained from the graphs K l and K p ∪ K n − p − l and edges connecting each vertex of K l with every vertex of K p ∪ K n − p − l . We prove that ρ α ( G p + 1 ) < ρ α ( G p ) for 1 ≤ p ≤ ⌊ n − l 2 ⌋ − 1 .

Keywords: spectral radius; minimal degree; independence number; ?-adjacency matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1668/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1668/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1668-:d:420782

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1668-:d:420782