EconPapers    
Economics at your fingertips  
 

Finite Difference Method for the Hull–White Partial Differential Equations

Yongwoong Lee and Kisung Yang
Additional contact information
Yongwoong Lee: Department of International Finance, College of Economics and Business, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Yongin-si 17035, Gyeonggi-do, Korea
Kisung Yang: School of Finance, College of Business Administration, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea

Mathematics, 2020, vol. 8, issue 10, 1-11

Abstract: This paper reviews the finite difference method (FDM) for pricing interest rate derivatives (IRDs) under the Hull–White Extended Vasicek model (HW model) and provides the MATLAB codes for it. Among the financial derivatives on various underlying assets, IRDs have the largest trading volume and the HW model is widely used for pricing them. We introduce general backgrounds of the HW model, its associated partial differential equations (PDEs), and FDM formulation for one- and two-asset problems. The two-asset problem is solved by the basic operator splitting method. For numerical tests, one- and two-asset bond options are considered. The computational results show close values to analytic solutions. We conclude with a brief comment on the research topics for the PDE approach to IRD pricing.

Keywords: finite difference method; Hull–White model; operator splitting method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1719/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1719/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1719-:d:424436

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1719-:d:424436