L p - L q -Well Posedness for the Moore–Gibson–Thompson Equation with Two Temperatures on Cylindrical Domains
Carlos Lizama and
Marina Murillo-Arcila
Additional contact information
Carlos Lizama: Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago 9160000, Chile
Marina Murillo-Arcila: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
Mathematics, 2020, vol. 8, issue 10, 1-9
Abstract:
We examine the Cauchy problem for a model of linear acoustics, called the Moore–Gibson–Thompson equation, describing a sound propagation in thermo-viscous elastic media with two temperatures on cylindrical domains. For an adequate combination of the parameters of the model we prove L p - L q -well-posedness, and we provide maximal regularity estimates which are optimal thanks to the theory of operator-valued Fourier multipliers.
Keywords: well-posedness; Moore–Gibson–Thompson equation; degenerate evolution equations; R-boundedness (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1748/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1748/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1748-:d:426462
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().