EconPapers    
Economics at your fingertips  
 

A Comparative Performance Assessment of Ensemble Learning for Credit Scoring

Yiheng Li and Weidong Chen
Additional contact information
Yiheng Li: College of Management and Economics, Tianjin University, Tianjin 300072, China
Weidong Chen: College of Management and Economics, Tianjin University, Tianjin 300072, China

Mathematics, 2020, vol. 8, issue 10, 1-19

Abstract: Extensive research has been performed by organizations and academics on models for credit scoring, an important financial management activity. With novel machine learning models continue to be proposed, ensemble learning has been introduced into the application of credit scoring, several researches have addressed the supremacy of ensemble learning. In this research, we provide a comparative performance evaluation of ensemble algorithms, i.e., random forest, AdaBoost, XGBoost, LightGBM and Stacking, in terms of accuracy (ACC), area under the curve (AUC), Kolmogorov–Smirnov statistic (KS), Brier score (BS), and model operating time in terms of credit scoring. Moreover, five popular baseline classifiers, i.e., neural network (NN), decision tree (DT), logistic regression (LR), Naïve Bayes (NB), and support vector machine (SVM) are considered to be benchmarks. Experimental findings reveal that the performance of ensemble learning is better than individual learners, except for AdaBoost. In addition, random forest has the best performance in terms of five metrics, XGBoost and LightGBM are close challengers. Among five baseline classifiers, logistic regression outperforms the other classifiers over the most of evaluation metrics. Finally, this study also analyzes reasons for the poor performance of some algorithms and give some suggestions on the choice of credit scoring models for financial institutions.

Keywords: credit scoring; ensemble learning; baseline classifiers; comparative assessment (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1756/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1756/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1756-:d:426903

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1756-:d:426903