EconPapers    
Economics at your fingertips  
 

Considering Section Balance in an Integer Optimization Model for the Curriculum-Based Course Timetabling Problem

Cristian D. Palma and Patrick Bornhardt
Additional contact information
Cristian D. Palma: Facultad de Ingeniería, Universidad del Desarrollo, Concepción 4040418, Chile
Patrick Bornhardt: Facultad de Ingeniería, Universidad del Desarrollo, Concepción 4040418, Chile

Mathematics, 2020, vol. 8, issue 10, 1-12

Abstract: University course timetabling is a complex and time-consuming duty that every educational institution faces regularly. It consists of scheduling a set of lectures in predefined time slots so as to avoid student conflicts, meet teacher and room availability, and manage several institution-specific operational rules. In this paper, we schedule courses based on a curriculum, that is, before the students’ registration. Unlike other curriculum-based models, the proposed model considers two practical aspects when managing the conflicts between lectures: (i) it schedules sections of subjects so that each section is evenly likely to be registered by the students, and (ii) it considers the failure rates and periodicity a subject is taught. We present a multi-objective integer programming model that maximizes the use of specific time slots, the symmetry in which the lectures of a course are scheduled during a week, and the flexibility for straggler students to take courses. The model is solved using commercial software, and it is applied to a real course-timetabling problem. We show the advantages of its use by comparing the model’s solution with the actual solution obtained by the manual scheduling.

Keywords: course timetabling; integer programing; balanced scheduling; curriculum-based timetabling (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1763/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1763/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1763-:d:427435

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1763-:d:427435