EconPapers    
Economics at your fingertips  
 

Efficient Parallel Implementations of LWE-Based Post-Quantum Cryptosystems on Graphics Processing Units

SangWoo An and Seog Chung Seo
Additional contact information
SangWoo An: Department of Financial Information Security, Kookmin University, Seoul 02707, Korea
Seog Chung Seo: Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Korea

Mathematics, 2020, vol. 8, issue 10, 1-21

Abstract: With the development of the Internet of Things (IoT) and cloud computing technology, various cryptographic systems have been proposed to protect increasing personal information. Recently, Post-Quantum Cryptography (PQC) algorithms have been proposed to counter quantum algorithms that threaten public key cryptography. To efficiently use PQC in a server environment dealing with large amounts of data, optimization studies are required. In this paper, we present optimization methods for FrodoKEM and NewHope, which are the NIST PQC standardization round 2 competition algorithms in the Graphics Processing Unit (GPU) platform. For each algorithm, we present a part that can perform parallel processing of major operations with a large computational load using the characteristics of the GPU. In the case of FrodoKEM, we introduce parallel optimization techniques for matrix generation operations and matrix arithmetic operations such as addition and multiplication. In the case of NewHope, we present a parallel processing technique for polynomial-based operations. In the encryption process of FrodoKEM, the performance improvements have been confirmed up to 5.2, 5.75, and 6.47 times faster than the CPU implementation in FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, respectively. In the encryption process of NewHope, the performance improvements have been shown up to 3.33 and 4.04 times faster than the CPU implementation in NewHope-512 and NewHope-1024, respectively. The results of this study can be used in the IoT devices server or cloud computing service server. In addition, the results of this study can be utilized in image processing technologies such as facial recognition technology.

Keywords: PQC; lattice-based; LWE; RLWE; FrodoKEM; NewHope; GPU; optimization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1781/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1781/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1781-:d:427871

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1781-:d:427871