Union of Sets of Lengths of Numerical Semigroups
J. I. García-García,
D. Marín-Aragón and
A. Vigneron-Tenorio
Additional contact information
J. I. García-García: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11510 Puerto Real, Spain
D. Marín-Aragón: Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real, Spain
A. Vigneron-Tenorio: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11406 Jerez de la Frontera, Spain
Mathematics, 2020, vol. 8, issue 10, 1-8
Abstract:
Let S = 〈 a 1 , … , a p 〉 be a numerical semigroup, let s ∈ S and let Z ( s ) be its set of factorizations. The set of lengths is denoted by L ( s ) = { L ( x 1 , ? , x p ) ? ( x 1 , ? , x p ) ∈ Z ( s ) } , where L ( x 1 , ? , x p ) = x 1 + ? + x p . The following sets can then be defined: W ( n ) = { s ∈ S ? ∃ x ∈ Z ( s ) such that L ( x ) = n } , ν ( n ) = ? s ∈ W ( n ) L ( s ) = { l 1 < l 2 < ? < l r } and Δ ν ( n ) = { l 2 − l 1 , … , l r − l r − 1 } . In this paper, we prove that the function Δ ν : N → P ( N ) is almost periodic with period lcm ( a 1 , a p ) .
Keywords: delta-set; non-unique factorization; numerical monoid; numerical semigroup (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1789/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1789/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1789-:d:428723
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().