EconPapers    
Economics at your fingertips  
 

Union of Sets of Lengths of Numerical Semigroups

J. I. García-García, D. Marín-Aragón and A. Vigneron-Tenorio
Additional contact information
J. I. García-García: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11510 Puerto Real, Spain
D. Marín-Aragón: Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real, Spain
A. Vigneron-Tenorio: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11406 Jerez de la Frontera, Spain

Mathematics, 2020, vol. 8, issue 10, 1-8

Abstract: Let S = 〈 a 1 , … , a p 〉 be a numerical semigroup, let s ∈ S and let Z ( s ) be its set of factorizations. The set of lengths is denoted by L ( s ) = { L ( x 1 , ? , x p ) ? ( x 1 , ? , x p ) ∈ Z ( s ) } , where L ( x 1 , ? , x p ) = x 1 + ? + x p . The following sets can then be defined: W ( n ) = { s ∈ S ? ∃ x ∈ Z ( s ) such that L ( x ) = n } , ν ( n ) = ? s ∈ W ( n ) L ( s ) = { l 1 < l 2 < ? < l r } and Δ ν ( n ) = { l 2 − l 1 , … , l r − l r − 1 } . In this paper, we prove that the function Δ ν : N → P ( N ) is almost periodic with period lcm ( a 1 , a p ) .

Keywords: delta-set; non-unique factorization; numerical monoid; numerical semigroup (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1789/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1789/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1789-:d:428723

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1789-:d:428723