EconPapers    
Economics at your fingertips  
 

Constrained Variational-Hemivariational Inequalities on Nonconvex Star-Shaped Sets

Stanisław Migórski and Long Fengzhen
Additional contact information
Stanisław Migórski: College of Sciences, Beibu Gulf University, Qinzhou 535000, China
Long Fengzhen: School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

Mathematics, 2020, vol. 8, issue 10, 1-18

Abstract: In this paper, we study a class of constrained variational-hemivariational inequality problems with nonconvex sets which are star-shaped with respect to a certain ball in a reflexive Banach space. The inequality is a fully nonconvex counterpart of the variational-hemivariational inequality of elliptic type since it contains both, a convex potential and a locally Lipschitz one. Two new results on the existence of a solution are proved by a penalty method applied to a variational-hemivariational inequality penalized by the generalized directional derivative of the distance function of the constraint set. In the first existence theorem, the strong monotonicity of the governing operator and a relaxed monotonicity condition of the Clarke subgradient are assumed. In the second existence result, these two hypotheses are relaxed and a suitable hypothesis on the upper semicontinuity of the operator is adopted. In both results, the penalized problems are solved by using the Knaster, Kuratowski, and Mazurkiewicz (KKM) lemma. For a suffciently small penalty parameter, the solution to the penalized problem solves also the original one. Finally, we work out an example on the interior and boundary semipermeability problem that ilustrate the applicability of our results.

Keywords: variational inequality; hemivariational inequality; pseudomonotone operator; KKM theorem; generalized gradient; Clarke’s tangent cone (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/10/1824/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/10/1824/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:10:p:1824-:d:430559

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1824-:d:430559