EconPapers    
Economics at your fingertips  
 

High Dimensional Hyperbolic Geometry of Complex Networks

Weihua Yang and David Rideout
Additional contact information
Weihua Yang: Faculty of Science, Beijing University of Technology, Beijing 100124, China
David Rideout: Department of Mathematics, University of California, San Diego, CA 92093, USA

Mathematics, 2020, vol. 8, issue 11, 1-39

Abstract: High dimensional embeddings of graph data into hyperbolic space have recently been shown to have great value in encoding hierarchical structures, especially in the area of natural language processing, named entity recognition, and machine generation of ontologies. Given the striking success of these approaches, we extend the famous hyperbolic geometric random graph models of Krioukov et al. to arbitrary dimension, providing a detailed analysis of the degree distribution behavior of the model in an expanded portion of the parameter space, considering several regimes which have yet to be considered. Our analysis includes a study of the asymptotic correlations of degree in the network, revealing a non-trivial dependence on the dimension and power law exponent. These results pave the way to using hyperbolic geometric random graph models in high dimensional contexts, which may provide a new window into the internal states of network nodes, manifested only by their external interconnectivity.

Keywords: hyperbolic geometry; complex network; degree distribution; asymptotic correlations of degree (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/11/1861/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/11/1861/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:11:p:1861-:d:433701

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1861-:d:433701