Analysis of the Sign of the Solution for Certain Second-Order Periodic Boundary Value Problems with Piecewise Constant Arguments
Sebastián Buedo-Fernández,
Daniel Cao Labora,
Rosana Rodríguez-López and
Stepan A. Tersian
Additional contact information
Sebastián Buedo-Fernández: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Daniel Cao Labora: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Rosana Rodríguez-López: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Stepan A. Tersian: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 8., 1113 Sofia, Bulgaria
Mathematics, 2020, vol. 8, issue 11, 1-34
Abstract:
We find sufficient conditions for the unique solution of certain second-order boundary value problems to have a constant sign. To this purpose, we use the expression in terms of a Green’s function of the unique solution for impulsive linear periodic boundary value problems associated with second-order differential equations with a functional dependence, which is a piecewise constant function. Our analysis lies in the study of the sign of the Green’s function.
Keywords: second-order differential equations; piecewise constant functional dependence; boundary value problems; Green’s function; comparison results; positive solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/11/1953/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/11/1953/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:11:p:1953-:d:439891
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().