EconPapers    
Economics at your fingertips  
 

Analysis of the Sign of the Solution for Certain Second-Order Periodic Boundary Value Problems with Piecewise Constant Arguments

Sebastián Buedo-Fernández, Daniel Cao Labora, Rosana Rodríguez-López and Stepan A. Tersian
Additional contact information
Sebastián Buedo-Fernández: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Daniel Cao Labora: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Rosana Rodríguez-López: Instituto de Matemáticas e Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
Stepan A. Tersian: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 8., 1113 Sofia, Bulgaria

Mathematics, 2020, vol. 8, issue 11, 1-34

Abstract: We find sufficient conditions for the unique solution of certain second-order boundary value problems to have a constant sign. To this purpose, we use the expression in terms of a Green’s function of the unique solution for impulsive linear periodic boundary value problems associated with second-order differential equations with a functional dependence, which is a piecewise constant function. Our analysis lies in the study of the sign of the Green’s function.

Keywords: second-order differential equations; piecewise constant functional dependence; boundary value problems; Green’s function; comparison results; positive solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/11/1953/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/11/1953/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:11:p:1953-:d:439891

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1953-:d:439891