Some Intrinsic Properties of Tadmor–Tanner Functions: Related Problems and Possible Applications
Nikolay Kyurkchiev
Additional contact information
Nikolay Kyurkchiev: Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24, Tzar Asen Str., 4000 Plovdiv, Bulgaria
Mathematics, 2020, vol. 8, issue 11, 1-15
Abstract:
In this paper, we study some properties of an exponentially optimal filter proposed by Tadmor and Tanner. More precisely, we consider the problem for approximating the function of rectangular type F ( t ) by the class of exponential functions σ a d a p t ( t ) about the Hausdorff metric. We prove upper and lower estimates for “saturation”— d (in the case q = 2 ). New activation and “semi-activation” functions based on σ a d a p t ( t ) are defined. Some related problems are discussed. We also consider modified families of functions with “polynomial variable transfer”. Numerical examples, illustrating our results using CAS MATHEMATICA are given.
Keywords: exponentially optimal adaptive filter; Hausdorff distance; upper and lower bounds; activation function; modified families of functions with “polynomial variable transfer” (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/11/1963/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/11/1963/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:11:p:1963-:d:440538
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().