State Feedback Regulation Problem to the Reaction-Diffusion Equation
Francisco Jurado and
Andrés A. Ramírez
Additional contact information
Francisco Jurado: División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. La Laguna, Revolución Blvd. and Instituto Tecnológico de La Laguna Av., Torreón 27000, Mexico
Andrés A. Ramírez: División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. La Laguna, Revolución Blvd. and Instituto Tecnológico de La Laguna Av., Torreón 27000, Mexico
Mathematics, 2020, vol. 8, issue 11, 1-16
Abstract:
In this work, we explore the state feedback regulator problem (SFRP) in order to achieve the goal for trajectory tracking with harmonic disturbance rejection to one-dimensional (1-D) reaction-diffusion (R-D) equation, namely, a partial differential equation of parabolic type, while taking into account bounded input, output, and disturbance operators, a finite-dimensional exosystem (exogenous system), and the state of the exosystem as the state to the feedback law. As is well-known, the SFRP can be solved only if the so-called Francis (regulator) equations have solution. In our work, we try with the solution of the Francis equations from the 1-D R-D equation following given criteria to the eigenvalues from the exosystem and transfer function of the system, but the state operator is here defined in terms of the Sturm–Liouville differential operator (SLDO). Within this framework, the SFRP is then solved for the 1-D R-D equation. The numerical simulation results validate the performance of the regulator.
Keywords: applied mathematics; computational methods; exogenous system; reaction-diffusion equation; regulator problem; Sturm-Liouville differential operator; tracking (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/11/1983/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/11/1983/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:11:p:1983-:d:441119
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().