Improving Convergence in Therapy Scheduling Optimization: A Simulation Study
Juan C. Chimal-Eguia,
Julio C. Rangel-Reyes and
Ricardo T. Paez-Hernandez
Additional contact information
Juan C. Chimal-Eguia: Lab. Simulación y Modelado, Centro de Investigación en Computación (CIC) del Instituto Politécnico Nacional, IPN, Av. Miguel Othon de Mendizabal s/n. Col. La Escalera, Ciudad de México CP 07738, Mexico
Julio C. Rangel-Reyes: Lab. Simulación y Modelado, Centro de Investigación en Computación (CIC) del Instituto Politécnico Nacional, IPN, Av. Miguel Othon de Mendizabal s/n. Col. La Escalera, Ciudad de México CP 07738, Mexico
Ricardo T. Paez-Hernandez: Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, U-Azcapotzalco, Av. San Pablo 180, Col. Reynosa, Ciudad de México CP 02200, Mexico
Mathematics, 2020, vol. 8, issue 12, 1-17
Abstract:
The infusion times and drug quantities are two primary variables to optimize when designing a therapeutic schedule. In this work, we test and analyze several extensions to the gradient descent equations in an optimal control algorithm conceived for therapy scheduling optimization. The goal is to provide insights into the best strategies to follow in terms of convergence speed when implementing our method in models for dendritic cell immunotherapy. The method gives a pulsed-like control that models a series of bolus injections and aims to minimize a cost a function, which minimizes tumor size and to keep the tumor under a threshold. Additionally, we introduce a stochastic iteration step in the algorithm, which serves to reduce the number of gradient computations, similar to a stochastic gradient descent scheme in machine learning. Finally, we employ the algorithm to two therapy schedule optimization problems in dendritic cell immunotherapy and contrast our method’s stochastic and non-stochastic optimizations.
Keywords: optimal control; immunotherapy; drug scheduling; adam optimizer (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/12/2114/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/12/2114/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:12:p:2114-:d:451350
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().