Wavelet Transform-Statistical Time Features-Based Methodology for Epileptic Seizure Prediction Using Electrocardiogram Signals
Andrea V. Perez-Sanchez,
Carlos A. Perez-Ramirez,
Martin Valtierra-Rodriguez,
Aurelio Dominguez-Gonzalez and
Juan P. Amezquita-Sanchez
Additional contact information
Andrea V. Perez-Sanchez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico
Carlos A. Perez-Ramirez: ENAP-Research Group, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus Aeropuerto, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico
Martin Valtierra-Rodriguez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico
Aurelio Dominguez-Gonzalez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico
Juan P. Amezquita-Sanchez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico
Mathematics, 2020, vol. 8, issue 12, 1-17
Abstract:
Epilepsy is a brain disorder that affects about 50 million persons around the world and is characterized by generating recurrent seizures, which can put patients in permanent because of falls, drowning, burns, and prolonged seizures that they can suffer. Hence, it is of vital importance to propose a methodology with the capability of predicting a seizure with several minutes before the onset, allowing that the patients take their precautions against injuries. In this regard, a methodology based on the wavelet packet transform (WPT), statistical time features (STFs), and a decision tree classifier (DTC) for predicting an epileptic seizure using electrocardiogram (ECG) signals is presented. Seventeen STFs were analyzed to measure changes in the properties of ECG signals and find characteristics capable of differentiating between healthy and 15 min prior to seizure signals. The effectiveness of the proposed methodology for predicting an epileptic event is demonstrated using a database of seven patients with 10 epileptic seizures, which was provided by the Massachusetts Institute of Technology–Beth Israel Hospital (MIT–BIH). The results show that the proposed methodology is capable of predicting an epileptic seizure 15 min before with an accuracy of 100%. Our results suggest that the use of STFs at frequency bands related to heart activity to find parameters for the prediction of epileptic seizures is suitable.
Keywords: seizure prediction; ECG signals; wavelet transform; statistical time features (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/12/2125/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/12/2125/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:12:p:2125-:d:452238
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().