EconPapers    
Economics at your fingertips  
 

A Numerical Method for the Solution of the Two-Phase Fractional Lamé–Clapeyron–Stefan Problem

Marek Błasik
Additional contact information
Marek Błasik: Institute of Mathematics, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland

Mathematics, 2020, vol. 8, issue 12, 1-21

Abstract: In this paper, we present a numerical solution of a two-phase fractional Stefan problem with time derivative described in the Caputo sense. In the proposed algorithm, we use a special case of front-fixing method supplemented by the iterative procedure, which allows us to determine the position of the moving boundary. The presented method is an extension of a front-fixing method for the one-phase problem to the two-phase case. The novelty of the method is a new discretization of the partial differential equation dedicated to the second phase, which is carried out by introducing a new spatial variable immobilizing the moving boundary. Then, the partial differential equation is transformed to an equivalent integro-differential equation, which is discretized on a homogeneous mesh of nodes with a constant spatial and time step. A new convergence criterion is also proposed in the iterative algorithm determining the location of the moving boundary. The motivation for the development of the method is that the analytical solution of the considered problem is impossible to calculate in some cases, as can be seen in the figures in the paper. Moreover, the change of the boundary conditions makes obtaining a closed analytical solution very problematic. Therefore, creating new numerical methods is very valuable. In the final part, we also present some examples illustrating the comparison of the analytical solution with the results received by the proposed numerical method.

Keywords: moving boundary problems; fractional derivatives and integrals; stefan problems; phase changes; numerical method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/12/2157/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/12/2157/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:12:p:2157-:d:455787

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2157-:d:455787