EconPapers    
Economics at your fingertips  
 

A Fast-Pivoting Algorithm for Whittle’s Restless Bandit Index

José Niño-Mora
Additional contact information
José Niño-Mora: Department of Statistics, Carlos III University of Madrid, 28903 Getafe, Spain

Mathematics, 2020, vol. 8, issue 12, 1-21

Abstract: The Whittle index for restless bandits (two-action semi-Markov decision processes) provides an intuitively appealing optimal policy for controlling a single generic project that can be active (engaged) or passive (rested) at each decision epoch, and which can change state while passive. It further provides a practical heuristic priority-index policy for the computationally intractable multi-armed restless bandit problem, which has been widely applied over the last three decades in multifarious settings, yet mostly restricted to project models with a one-dimensional state. This is due in part to the difficulty of establishing indexability (existence of the index) and of computing the index for projects with large state spaces. This paper draws on the author’s prior results on sufficient indexability conditions and an adaptive-greedy algorithmic scheme for restless bandits to obtain a new fast-pivoting algorithm that computes the n Whittle index values of an n -state restless bandit by performing, after an initialization stage, n steps that entail ( 2 / 3 ) n 3 + O ( n 2 ) arithmetic operations. This algorithm also draws on the parametric simplex method, and is based on elucidating the pattern of parametric simplex tableaux, which allows to exploit special structure to substantially simplify and reduce the complexity of simplex pivoting steps. A numerical study demonstrates substantial runtime speed-ups versus alternative algorithms.

Keywords: restless bandits; Whittle index; stochastic scheduling; index policies; indexability; index algorithm; Markov decision processes (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/12/2226/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/12/2226/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:12:p:2226-:d:462361

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2226-:d:462361