EconPapers    
Economics at your fingertips  
 

Banach Lattice Structures and Concavifications in Banach Spaces

Lucia Agud, Jose Manuel Calabuig, Maria Aranzazu Juan and Enrique A. Sánchez Pérez
Additional contact information
Lucia Agud: Departamento de Matemática Aplicada, Universitat Politècnica de València, Campus de Alcoy, 03801 Alicante, Spain
Jose Manuel Calabuig: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Maria Aranzazu Juan: Faculty of Administración y Dirección de Empresas (ADE), Universidad Católica de Valencia, 46001 Valencia, Spain
Enrique A. Sánchez Pérez: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2020, vol. 8, issue 1, 1-20

Abstract: Let ( Ω , Σ , μ ) be a finite measure space and consider a Banach function space Y ( μ ) . We say that a Banach space E is representable by Y ( μ ) if there is a continuous bijection I : Y ( μ ) → E . In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of the p th power of a Banach space, the characterization of spaces of operators that are isomorphic to Banach lattices of multiplication operators, and the representation of certain spaces of homogeneous polynomials on Banach spaces as operators acting in function spaces.

Keywords: Banach function space; concavification; local theory; Banach space; strongly p -integral operator; p th power (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/1/127/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/1/127/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:1:p:127-:d:308613

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:127-:d:308613