EconPapers    
Economics at your fingertips  
 

Slant Curves in Contact Lorentzian Manifolds with CR Structures

Ji-Eun Lee
Additional contact information
Ji-Eun Lee: Institute of Basic Science, Chonnam National University, Gwangju 61186, Korea

Mathematics, 2020, vol. 8, issue 1, 1-11

Abstract: In this paper, we first find the properties of the generalized Tanaka–Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the ∇ ^ -geodesic is a magnetic curve (for ∇) along slant curves. Finally, we prove that when c ≤ 0 , there does not exist a non-geodesic slant Frenet curve satisfying the ∇ ^ -Jacobi equations for the ∇ ^ -geodesic vector fields in M . Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms M 1 3 ( H ^ ) for H ^ = 2 c > 0 .

Keywords: slant curves; Jacobi equation; CR structure; Lorentzian Sasakian space forms (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/1/46/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/1/46/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:1:p:46-:d:304186

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:46-:d:304186