Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
Andrius Grigutis and
Jonas Šiaulys
Additional contact information
Andrius Grigutis: Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Jonas Šiaulys: Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Mathematics, 2020, vol. 8, issue 2, 1-30
Abstract:
In this paper, we prove recursive formulas for ultimate time survival probability when three random claims X , Y , Z in the discrete time risk model occur in a special way. Namely, we suppose that claim X occurs at each moment of time t ∈ { 1 , 2 , … } , claim Y additionally occurs at even moments of time t ∈ { 2 , 4 , … } and claim Z additionally occurs at every moment of time, which is a multiple of three t ∈ { 3 , 6 , … } . Under such assumptions, the model that is obtained is called the three-risk discrete time model. Such a model is a particular case of a nonhomogeneous risk renewal model. The sequence of claims has the form { X , X + Y , X + Z , X + Y , X , X + Y + Z , … } . Using the recursive formulas, algorithms were developed to calculate the exact values of survival probabilities for the three-risk discrete time model. The running of algorithms is illustrated via numerical examples.
Keywords: multi-risk model; discrete-time risk model; ruin probability; survival probability; ultimate time; net profit condition (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/2/147/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/2/147/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:2:p:147-:d:311412
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().