EconPapers    
Economics at your fingertips  
 

Fractional Derivatives and Integrals: What Are They Needed For?

Vasily E. Tarasov and Svetlana S. Tarasova
Additional contact information
Vasily E. Tarasov: Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
Svetlana S. Tarasova: Faculty “Information Technologies and Applied Mathematics”, Moscow Aviation Institute (National Research University), Moscow 125993, Russia

Mathematics, 2020, vol. 8, issue 2, 1-22

Abstract: The question raised in the title of the article is not philosophical. We do not expect general answers of the form “to describe the reality surrounding us”. The question should actually be formulated as a mathematical problem of applied mathematics, a task for new research. This question should be answered in mathematically rigorous statements about the interrelations between the properties of the operator’s kernels and the types of phenomena. This article is devoted to a discussion of the question of what is fractional operator from the point of view of not pure mathematics, but applied mathematics. The imposed restrictions on the kernel of the fractional operator should actually be divided by types of phenomena, in addition to the principles of self-consistency of mathematical theory. In applications of fractional calculus, we have a fundamental question about conditions of kernels of fractional operator of non-integer orders that allow us to describe a particular type of phenomenon. It is necessary to obtain exact correspondences between sets of properties of kernel and type of phenomena. In this paper, we discuss the properties of kernels of fractional operators to distinguish the following types of phenomena: fading memory (forgetting) and power-law frequency dispersion, spatial non-locality and power-law spatial dispersion, distributed lag (time delay), distributed scaling (dilation), depreciation, and aging.

Keywords: fractional calculus; fractional derivative; translation operator; distributed lag; time delay; scaling; dilation; memory; depreciation; probability distribution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/2/164/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/2/164/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:2:p:164-:d:312990

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:164-:d:312990