On Null-Continuity of Monotone Measures
Jun Li
Additional contact information
Jun Li: School of Sciences, Communication University of China, Beijing 100024, China
Mathematics, 2020, vol. 8, issue 2, 1-13
Abstract:
The null-continuity of monotone measures is a weaker condition than continuity from below and possesses many special properties. This paper further studies this structure characteristic of monotone measures. Some basic properties of null-continuity are shown and the characteristic of null-continuity is described by using convergence of sequence of measurable functions. It is shown that the null-continuity is a necessary condition that the classical Riesz’s theorem remains valid for monotone measures. When considered measurable space ( X , A ) is S -compact, the null-continuity condition is also sufficient for Riesz’s theorem. By means of the equivalence of null-continuity and property (S) of monotone measures, a version of Egoroff’s theorem for monotone measures on S -compact spaces is also presented. We also study the Sugeno integral and the Choquet integral by using null-continuity and generalize some previous results. We show that the monotone measures defined by the Sugeno integral (or the Choquet integral) preserve structural characteristic of null-continuity of the original monotone measures.
Keywords: fuzzy measure; monotone measure; null-continuity; Sugeno integral; Choquet integral; nonlinear integral (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/2/205/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/2/205/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:2:p:205-:d:317257
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().