EconPapers    
Economics at your fingertips  
 

Divisibility Patterns within Pascal Divisibility Networks

Pedro A. Solares-Hernández, Fernando A. Manzano, Francisco J. Pérez-Benito and J. Alberto Conejero
Additional contact information
Pedro A. Solares-Hernández: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
Fernando A. Manzano: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
Francisco J. Pérez-Benito: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
J. Alberto Conejero: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain

Mathematics, 2020, vol. 8, issue 2, 1-10

Abstract: The Pascal triangle is so simple and rich that it has always attracted the interest of professional and amateur mathematicians. Their coefficients satisfy a myriad of properties. Inspired by the work of Shekatkar et al., we study the divisibility patterns within the elements of the Pascal triangle, through its decomposition into Pascal’s matrices, from the perspective of network science. Applying Kolmogorov–Smirnov test, we determine that the degree distribution of the resulting network follows a power-law distribution. We also study degrees, global and local clustering coefficients, stretching graph, averaged path length and the mixing assortative.

Keywords: network science; graph theory; divisibility; Pascal matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/2/254/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/2/254/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:2:p:254-:d:320856

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:254-:d:320856