A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems
Ramandeep Behl and
Ioannis K. Argyros
Additional contact information
Ramandeep Behl: Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Ioannis K. Argyros: Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
Mathematics, 2020, vol. 8, issue 2, 1-21
Abstract:
Many real-life problems can be reduced to scalar and vectorial nonlinear equations by using mathematical modeling. In this paper, we introduce a new iterative family of the sixth-order for a system of nonlinear equations. In addition, we present analyses of their convergences, as well as the computable radii for the guaranteed convergence of them for Banach space valued operators and error bounds based on the Lipschitz constants. Moreover, we show the applicability of them to some real-life problems, such as kinematic syntheses, Bratu’s, Fisher’s, boundary value, and Hammerstein integral problems. We finally wind up on the ground of achieved numerical experiments, where they perform better than other competing schemes.
Keywords: iterative schemes; Newton’s method; Banach space; order of convergence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/2/271/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/2/271/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:2:p:271-:d:322059
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().